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Fan Noise Source Diagnostic Test - Vane Unsteady Pressure Results

Edmane Envia*

National Aeronautics and Space Administration
Glenn Research Center
Cleveland, Ohio 44135

Abstract

To investigate the nature of fan outlet guide vane pressure fluctuations and their link to rotor-
stator interaction noise, time histories of vane fluctuating pressures were digitally acquired as part of
the Fan Noise Source Diagnostic Test. Vane unsteady pressures were measured at seven fan tip
speeds for both a radial and a swept vane configuration. Using time-domain averaging and spectral
analysis, the blade passing frequency (BPF) harmonic and broadband contents of the vane pressures
were individually analyzed. Significant Sound Pressure Level (SPL) reductions were observed for the
swept vane relative to the radial vane for the BPF harmonics of vane pressure, but vane broadband
reductions due to sweep turned out to be much smaller especially on an average basis. Cross-

correlation analysis was used to establish the level of spatial coherence of broadband pressures
between different locations on the vane and integral length scales of pressure fluctuations were
estimated from these correlations. Two main results of this work are: (1) the average broadband level
on the vane (in dB) increases linearly with the fan tip speed for both the radial and swept vanes, (2)
the broadband pressure distribution on the vane is nearly homogeneous and its integral length scale is

a monotonically decreasing function of fan tip speed.

In_oducfion

It has long been postulated that rotor-stator

interaction noise is primarily generated by the pressure
fluctuations that are induced on the stator vanes as a result

of the impingement of the passing rotor wakes. These
local pressure fluctuations, once produced, propagate
outward and coalesce with the pressure waves originating
elsewhere on the stator, to form a spinning pressure
pattern known as a duct mode. If the conditions are
favorable (as dictated by the duct geometry, mean flow
characteristics and frequency of the fluctuations), these
spinning pressure patterns are self-sustaining and result in
the so-called propagating modes, which eventually radiate
to the farfield from engine inlet and exhaust. Most of the
time, however, due to imperfect phase and amplitude
matching between their constituent elements, the modes
are evanescent and decay in the fan duct and never make
it to the farfield. The aggregate contributions from all
these duct modes constitute the pressure field that is
called the rotor-stator interaction noise.

This description of the underlying process is
satisfactory (and useful) when dealing with coherent (i.e.,
periodic) vane fluctuations that result in discrete

frequency interaction tones. In fact, noise reduction
strategies that are predicated on this idea have shown to
be effective (see, for example, [1]). However, when
dealing with incoherent (i.e., broadband) vane pressure
fluctuations, the picture is unwieldy since the notion of
proper phase and amplitude matching is ill defined and
one is hard-pressed to reconcile the random phase and
amplitude characteristics of vane pressure fluctuations
with specific well-defined mode patterns since this
implies some measure of underlying order and coherence.

In an attempt to elucidate the connection between
the vane pressure fluctuations and the rotor-stator
interaction noise, surface distributions of vane fluctuating
pressures were measured as part of the Fan Noise Source
Diagnostic Test (SDT). The SDT was a comprehensive
aero-acoustic test of a model 22-inch fan stage
representing the bypass section of a modern high bypass
ratio turbofan engine. In addition to the vane unsteady
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pressures, blade row and stage aerodynamic performance

data, fan inlet, tip flow and wake turbulence, fan duct wall

fluctuating pressures, fan duct modes, and farfield noise

spectra were also acquired as part of the SDT [2-8]. The

tests were conducted in the NASA Glenn Research

Center's 9-foot by 15-foot acoustic wind tunnel. The

model fan has 22 blades and a design tip speed of

1215 ft/sec. Three outlet guide vane (OGV)

configurations were utilized in the SDT. A baseline OGV

which has 54 radial vanes to "cut-off' the blade-passing-

frequency (BPF) rotor-stator interaction tone, a low-count

OGV representing a "cut-on" concept which has 26 radial

vanes, and a swept OGV which has 26 swept vanes with

30 degrees of sweep. The smaller vane count for the 26-

vane radial stator was selected to reduce broadband noise

as compared with the baseline OGV [9]. The swept OGV

was designed to minimize the blade passing frequency

tone penalty associated with a cut-on vane design. All

three stator had the same solidity.

Vane Unsteady Pressure Measurements

Vane pressure time histories were obtained using

only the 26-vane radial and swept OGVs shown in

Figure 1. Owing to its relatively small chord and

thickness, the baseline stator was unsuitable for

instrumentation. For each of the two tested stator

configurations, there were two instrumented vanes: one

(designated vane 1) containing 31 pressure transducers

and its neighbor (designated vane 2) containing only 11

pressure transducers. The transducers were arranged in

three chordwise lines (at the 20%, 60% and 87% span

locations) and one spanwise line (at 20% chord location).

The locations and layout of the sensors are shown in

Figure 2. The transducer layout was chosen to maximize

the vane surface area coverage given the physical

limitations that existed in the total number of the

transducers that could be accommodated inside the vane.

The transducers were encased within the vanes,

which were split along the 40%-60% thickness line to

accommodate the transducers as shown in Figure 3. The

transducers were vented on both sides so they measured

the pressure difference fluctuations across the blade

thickness. However, by taping one side of the vane,

pressure-side or suction-side fluctuations could also be

measured.

Unsteady pressure data for seven fan tip speeds (see

Table 1) were recorded for later analysis. In this paper,

mainly, the results for three fan speeds, 61.7%, 87.5% and

100%, will be presented. These speeds correspond to the

approach, cutback and takeoff conditions for the model

fan stage. However, where appropriate, significant results

for all tested tip speeds will be shown.

Figure 1. Photographs of partially assembled 22-inch Source

Diagnostic Test fan stage. The fan outlet guide vane

stators for which surface unsteady pressure data were

obtained are shown. (Top: 26-vane radial stator.
Bottom: 26-vane swept stator).

For each test condition, 9.6 seconds of pressure time

histories were digitally recorded at a sampling rate of

128 kHz for all transducers simultaneously. Since, the fan

rpm tended to drift slightly (typically less than +0.3% )

during each run, the recorded data had to be resampled

(via interpolation) assuming a fixed nominal (average)

rpm. By a judicious choice of resampling rate, the

interpolation error was minimized.

The resulting re-sampled data was then ensemble-

averaged (in the time-domain) to separate the periodic and

non-periodic parts of the signal. By choosing the

ensemble size to correspond to one revolution of fan

shaft, the periodic part could be made to include all

coherence that is shaft-order locked (i.e., it is synchronous

to the once-per-revolution dynamics). This includes not

only the components that are related to the blade passing

frequency (BPF) harmonics, but also any periodicity

associated with the blade-to-blade variations. Subtracting

the periodic part from the original time trace yields a time

series that is an aggregate of all components that are not

periodic in any shaft order. The shaft-order locked time

NAS A/TM--2002-211808 2



serieswasfurtheraveragedovertheperiodforoneblade
passageto isolatethe BPFharmoniccontent.The
resultingthreeconstituenttimeseries,i.e.,thebroadband,
shaft-ordersand BPF harmonics,could then be
individuallyanalyzedon a spectralbasis.Thetime
averagingwasdoneusingalargenumberofcontiguous
ensembles(over1000for all cases)to ensuregood
averages.A representativeexampleof theresulting
"decomposed"spectraisshowninFigure4.Theoverall
andtheconstituentbroadbandandshaftorderSound
PressureLevel(SPL)spectraareplottedwiththeBPF
harmoniccontentsuperimposedontheshaftordersfor
clarity.All of theresultspresentedin thispaperwere
obtainedusingthisprocedure.

Thepresentationof thetestresultsis asfollows.
BPFharmonicdataarepresentedfirstandarefollowedby
thebroadbanddata.In eachcase,sampleresultsare
shownanddiscussedwith additionalrelevantresults
includedintwoappendicesattheendofthepaper.Since,
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Figure 2. Layout of vane pressure transducer locations for the

radial stator. Two adjacent vanes were instrumented.
There were 31 pressure transducers on vane 1 and 11

pressure transducers on vane 2. Dark circles indicate

pressure transducer locations on vane 1 only. Light

circles denote pressure transducers locations on both

vanes. The swept vane had an identical layout on

percent basis.

Transducer Housing
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% Chord

Figure3. Schematic of vane-embedded pressure transducer

locations. Pressure transducers were located along the
40%-60% thickness split line. (Not to scale).
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Table 1. Fan conditions used in the vane unsteady pressure

measurements. The highlighted speeds are the ones

for which most of the results in this paper are

presented.
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4. Spectral decomposition via time-domain averaging.

Representative results for the radial stator at 87.5% tip

speed are shown. The spectrum of the original time

series is on the top and that for its broadband content
in the middle. On the bottom, are the shaft order and

BPF harmonic spectra plotted together. Note the

preponderance of shaft order harmonic content present
in the time series.
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thevane2dataturnedouttobesimilarincharactertothe
vane1data,onlyresultsforthe31transducersonvane1
willbeincludedhere.Inallbutafewcases,theresultsare
plottedonthepercentspanandpercentchordbasisto
facilitatecomparisonoftheradialandsweptvaneresults.
Also,unlessotherwisestated,theresultsshownarefor
theunsteadypressuredifferenceacrossthevane,thatis
forkp=(Psuction - P pressure )"

BPF Harmonic Results

The lxBPF harmonic magnitude and phase of the

vane unsteady pressure at the approach condition are

shown in Figures 5 and 6 for both the radial and swept

vanes. The presentation of the results follows the layout

of the transducers shown in Figure 2. To save space, the

spanwise plot (i.e., the graph on the left) is turned on its

side so that the ordinate and abscissa are interchanged.

The BPF harmonic SPL is in dB and its phase (un-rolled

if necessary) is in degrees. The solid lines denote the

radial vane results and the dashed lines the swept vane

results. In the forward portion of the vane (< 30% chord),

there are noticeable reductions in the SPL (by as much as

10 dB) due to vane sweep, but as one moves further aft

along the chord, the sweep benefits diminish and there are

even increases for the swept vane in a few places. These

increases turn out to be incidental since an examination of

corresponding results for the 2xBPF content at cutback

and 3xBPF content at takeoff, shown in Figures A1 and

A3 in Appendix A, indicate that vane sweep is almost

always beneficial in reducing the level of vane pressure

BPF harmonics.
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Figure 5. Influence of sweep on lxBPF content of vane
unsteady pressure. Solid lines denote SPL for the

radial vane and dashed lines for the swept vane.

Levels for the approach condition are shown.

The more puzzling result is the behavior of the

phase of the BPF harmonics shown in Figure 6. Earlier

studies (see, for example, [10]) had indicated that vane

sweep is effective because it increase the obliqueness of

the rotor wake as seen by the stator and thus increases the

spanwise variation of the phase of the incident upwash

and, as a consequence, the phase of the resultant unsteady

pressure on the vane. In contrast, a comparison of the

radial and swept vane BPF harmonic phases plotted in

Figures 6, A2 and A4 in fact show comparable behavior

for both vane configurations. One possible explanation for

this unexpected behavior is that spanwise variation of the

upwash once imprinted on the vane leading edge does not

persist for any significant distance along the chord owing

to the three dimensional nature of the unsteady pressure

response. It is also possible that the spanwise arrangement

of the transducers is too spars to capture the details even

if there is a significant variation in the phase along the

span.
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Figure 6. Comparison of lxBPF spanwise and chordwise phase
distributions for the radial (solid lines) and swept

(dashed lines) vanes. Results for the approach
condition are shown.

Next the dependence of the BPF harmonic content

on the fan tip speed is examined. The SPL for the first

five BPF harmonics obtained at three representative

transducers (3, 13 and 24) are shown in Figure 7 for the

radial vane and in Figure 8 for the swept vane. The solid

bars denote the levels for approach, open bars for cutback

and shaded bars for takeoff. Other than the absolute level

differences between the radial and swept vane levels, the

behavior of the harmonic content is similar for both

showing that, for the most part, the SPL decreases

monotonically with increasing harmonic order for all

three spanwise locations and for all three speeds. The fall

off rate for the harmonic amplitudes depends on the fan

tip speed and is large at approach and much smaller at

takeoff. This is likely a result of the change in the

NAS A/TM--2002-211808 4
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Figure 7. Influence of fan tip speed on BPF harmonics of the

vane unsteady pressure for transducers 3, 13 and 24.

Solid bars denote levels at approach, open bars the
levels at cutback and shaded bars the levels at takeoff.

The results shown are for the radial stator.
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Figure 8. Same as Figure 7 but with the results for the swept
stator shown.

magnitude of the circumferential phase velocity of the

rotor disturbances as they pass the stator vanes. As the tip

speed of the fan is increased, the circumferential phase

speed of the disturbances increases producing "sharper"

waveforms for the unsteady vane pressures. The sharper

waveforms have more evenly distributed BPF harmonic

content as compared with the smoother waveforms at the

approach condition.

The differences between the BPF harmonic

magnitude and phase for the taped and un-taped vane

configurations are shown in Figures 9 through 12. Recall

that by taping one side of the vane, pressure histories on

the opposite side could be obtained. The taped side for

vane 1 was the suction side, so the corresponding results

are for the pressure-side fluctuations denoted by Ppressvsre •

The results for the untaped vane are denoted by Ap. In

Figures 9 and 10, the lxBPF magnitude and phase for the

radial vane at the approach condition are shown. The

corresponding results for the swept vane are shown in

Figures 11 and 12. In these plots the solid lines denote the

Ap results and dashed lines the Ppressvsre results.
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Figure 9. Comparison of lxBPF SPL for the Ap (solid fines)

and Ppressure (dashed fines) configurations for the

radial vane. Levels for the approach condition are
shown.
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condition are shown.
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Figure 12. Same as Figure 10 but with the results for the swept
vane shown.

Broadband Results

The presentation of broadband results is in two

parts. In the first part, the presentation closely follows that

for the BPF harmonic results except that the variations of

broadband SPL are now plotted for all transducers on

vane 1 as a function of various parameters. Here, the

broadband SPL is defined to be the r.m.s value of pressure

spectrum from 0 to 64 kHz with the latter being the

Nyquist limit of the sampling rate. It should be noted that

when the frequency range was truncated to 2 to 64 kHz to

avoid all potential low-frequency contamination, the

resulting r.m.s value changed by less than 0.5 dB. So, in

what follows (and where applicable) the r.m.s value is

based on the 0 to 64 kHz range. It should be noted that all

spectra were computed using 600 overlapped 4096-point

FFT ensembles in the frequency domain resulting in a

bandwidth of 31.25 Hz for all cases presented.

In the second part of the presentation of broadband

results, the nature of broadband pressure correlations on

the vane and spatial coherence and integral length scales

of broadband pressure are examined. As before, sample

results are discussed in some detail with the additional

relevant results included in Appendix B.

Figure 13 shows the influence of sweep on vane

broadband levels at the approach condition. The

corresponding results for the cutback and takeoff

conditions are shown in Figures B1 and B2 in Appendix

B. To begin with, note that for the most part there are

broadband level reductions due to sweep but that these

reductions are very modest typically 2 dB or less. For

both vanes, however, there is an increase in the broadband

level from hub to tip. For the approach condition, the

199

99

In general, where the magnitudes and phases for the 89

kp and ])pressure results are very close, the suction side 79

levels must be small in comparison with the pressure side c_
69

levels. However, where there are large differences "e so

between the two results, the picture is not as clear, since _ 4o

phase plays a much more important role. For example, if o_
30

the pressure and suction side levels were nearly equal in

amplitude but were out of phase, the resulting pressure 2o

difference would have twice the magnitude of each side. lO

But if the two sides where in phase, then the kp levels

would be very small. Therefore, no general conclusions 14o

can be drawn from these results. The corresponding

results for 2xBPF and 3xBPF content at cutback and

approach are summarized in Figures A5 through A12.

155
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Figure 13. Influence of sweep on vane broadband level. Solid
lines denote r.m.s broadband SPL for the radial vane

and dashed lines for the swept vane. Levels for the

approach condition are shown.
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increaseisasmuchas5dB,butforcutbackandtakeoff lOO
theincreaseis2dBorless.Fortheforwardportionofthe 0o
vane(say,lessthan50%chord)thebroadbandlevelsstay 0o
essentiallyconstant,buttowardthetrailingedgerelatively

70

large excursions in the broadband level are observed for

all three speeds. The origin of these excursions is not _ 0o
O3

clear. Overall, the data indicate that as the tip speed "e so

increases the variation of broadband SPL across the vane
0) 40

diminishes as does the difference between the radial and a_

swept vane levels, ao

20

10In Figures 14 and 15, the broadband Ap and

P/Jre_'ure levels are plotted for the radial and swept vanes,

respectively. The pressure-side levels are generally lower

by an average of 3 dB across the board. The likely reason

is that the suction-side pressure loading is somewhat

larger than the pressure-side loading. Corresponding

result for the cutback and approach conditions can be

found in Appendix B (Figures B3 through B6).

The influence of fan tip speed on the average

broadband level for the radial and swept vanes is shown

in Figure 16. In this figure the arithmetic average of the

r.m.s levels of all vane transducers is plotted against the

percent fan tip speed. Interestingly, the average

broadband level (in dB) increases almost linearly with the

fan tip speed. Evidently, the vane broadband loading is,

on an average basis, a simple function of fan tip speed.

Note also that the radial and swept vane levels are

virtually the same in this average sense for any fan tip

speed. This is a striking result, since the BPF harmonic

content is reduced for the swept vane, but the average

broadband is evidently not strongly affected by sweep!

Equally interesting is how this average level is

related to the average farfield broadband level. As part of

the vane unsteady pressure test, pressure time histories

were simultaneously obtained at four microphone

positions shown in Figure 17 (labeled as the reference

wall and fixed microphones). These microphones were

located approximately four fan diameters from the fan

axis and a similar distance downstream of the fan exhaust

nozzle. The average exhaust farfield broadband pressure

levels, also plotted in Figure 16, show the same general

trend as the vane average levels. Therefore, in an average

sense, the vane and farfleld broadband levels seem to be

strongly linked.

The average broadband levels for the taped radial

and swept vanes are compared with the corresponding

farfleld average levels in Figures B7 and B8. Consistent

with the results already shown in Figures 13 and 14, the

swept vane average broadband levels are very close to the

radial vane levels, and the Ppress_re average broadband

I 14o/ 7 , ",
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1401 I I I I I I I I

_ 145 ._...<.14'5 I
55 140/ ¢1°° I I I I I I "_

SPL. dB 0 10 20 30 40 50 60 70 80 90

Percent Chord

Figure 14. Comparison of the kp (solid lines) and Ppress'ure

(dashed lines) r.m.s broadband levels for the radial

vane. Levels for the approach condition are shown.
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Figure 15. Same as Figure 14 but with the results for the swept
vane shown.
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135

SPL is consistently less than the corresponding kp

average broadband SPL.

Aside from examining the broadband pressure levels

on the vane, the pressure time series were also used to

establish the level of coherence between pressure

fluctuations measured at different points on the vane. This

was accomplished by computing the correlation

coefficient Pi,j (T) (see, for example, [11]) which defines

the normalized cross-correlation between pressure

fluctuations at a pair of points (i and j) at a given time

delay r. Naturally, the vane pressure fluctuations contain

both convective (i.e., flow) and acoustic (i.e., sound)

influences. Fortunately, since the time scales of the two

NAS A/TM--2002-211808 7
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Figure 16. Dependence of vane average broadband SPL on fan

tip speed for radial (solid line) and swept (dashed

line) vanes. For comparison, the corresponding
average broadband levels in the farfield (exhaust

quadrant) are also plotted.

I_ 344

Figure 17. Location of the four farfield microphones for which

pressure fluctuations were acquired simultaneously

with the vane pressures. These are labeled the
reference wall and fixed microphones.

processes are disparate, useful information can be

extracted from such correlations. Computationally, it is

most convenient to use the already computed individual

broadband pressure spectra to construct the cross-

spectrum in the frequency domain and then Fourier invert

the result to obtain the cross-correlation in the time

domain. The result is correlation over a whole range of

time delays.

Typical results using this procedure are shown in

Figure 18 where the correlation coefficient for a pair of

transducer locations is plotted against a range of time

delays (in msec) as their separation distance is increased.

It should be emphasized that these results show the level

of correlation between the broadband content of vane

pressure only. Not surprisingly, the correlation level

1.2

cff

°8t A
¢o 0.6

0._ 0.4

0.2

-02r ,
1.2

o 0.8

0.6

0_. 0.4
0.2

0.0

-0.2
-10

Figure 18.

-8 -6 -4 -2 0 2 4 6 8 10

Time Delay, msec

Correlations coefficient of the vane broadband

pressure computed for three spanwise points at 20%

chord: (a) is the auto-correlation coefficient of

pressure at a reference point and (b) and (c) are the
cross-correlations coefficients between the reference

position with points, respectively 0.45 inch and 0.98

inch away. The results for the radial stator at the

approach condition are shown.

diminishes as the spacing between the points is increased.

Note also that highest levels of correlation occur at or

near zero time delay, which suggests that the coherence is

dominated by the acoustic rather than convective effects

(large propagation speed resulting in small time delays).

The level of spatial coherence for broadband

pressure at a given point on the vane surface can be

estimated by considering the zero time delay correlation

level as a function of separation distance along the span

and chord lines passing through the point under

consideration. The resulting plot typically looks like the

example shown in Figure 19. It is clear that there is little

difference between the spatial coherence in the spanwise

and chordwise directions at this point indicating a

homogeneous pressure field at that location.

The area under the curves in Figure 19 is the integral

length scale of pressure. The variations of the chordwise

and spanwise integral scales as a function of the span are

shown in Figure 20 for both radial and swept vanes at the

approach condition. These results indicate that the

pressure field is essentially homogeneous showing only

modest variation in the integral length scale across the

vane. This is most likely due to the global nature of

pressure field as opposed to the local nature of a turbulent

eddy. Even a small turbulent eddy impinging on the vane

will set up a pressure response everywhere on the stator.

For the same reason, vane sweep does not seem to have a

significant influence on the integral length scale either.

NAS A/TM--2002-211808 8
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Figure 19. Variation of vane pressure zero-time-delay

correlation with distance (typical result). Solid line

denotes the variation along the span and dashed line

variation along the chord for a given point on the
vane. The results shown are for the radial vane at the

approach condition.

Finally, the variation of the pressure integral scale as

a function of fan tip speed is shown in Figure 21. The

results indicate that the integral length scale of vane

pressure decreases monotonically with increasing fan tip

speed. This is probably because there is a corresponding

decrease in the average size of the turbulence eddys

impinging on the vane as the fan tip speed is increased.

This conjecture cannot be verified until variation of the

integral length scale(s) of turbulence interacting with the

vane is measured as a function of tip speed.
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Figure20. Spanwise variation of pressure integral length

scales. Both spanwise (circles) and chordwise

(diamonds) length scales are plotted. Radial vane

results are denoted by solid symbols and swept vane

results with open symbols.
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Figure 21. Dependence of integral length scale of pressure on

fan tip speed. The results for radial vane (solid

symbols) and swept vane (open symbols) are shown.

Summary

The nature of fan outlet guide vane pressure

fluctuations was examined by acquiring digital samples of

time histories of fluctuating pressures using instrumented

vanes. Unsteady pressures were measured at seven fan tip

speeds for both a radial and a swept vane configuration.

Using time-domain averaging and spectral analysis, the

blade passing frequency harmonic and broadband

contents of the vane pressures were individually analyzed.

Significant SPL reductions were observed for the swept
vane relative to the radial vane for the BPF harmonics of

vane pressure, but vane broadband reductions turned out

to be much smaller especially on an average basis. Cross-

correlation analysis was used to establish the level of

spatial coherence of broadband pressures between

different locations on the vane and the integral length

scale of pressure fluctuations was estimated from these

correlations. Two main results of this work are: (1) the

average broadband level on the vane (in dB) increases

linearly with the fan tip speed for both the radial and

swept vanes, (2) the broadband pressure distribution on

the vane is nearly homogeneous and its integral length

scale is a monotonically decreasing function of fan tip

speed.
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Appendix A

Additional Tone Results
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Figure A1. Influence of sweep on 2xBPF harmonic content of

vane unsteady pressure. Solid lines denote SPL for

the radial vane and dashed lines for the swept vane.
Levels for the cutback (87.5% tip speed) condition
are shown.
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Figure A3. Same as Figure A1 but with 3xBPF harmonic levels

at the takeoff (100.0% tip speed condition) shown.
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Figure A2. Comparison of 2xBPF spanwise and chordwise

phase distributions for radial (solid lines) and swept

(dashed lines) vanes. Results for the cutback
condition are shown.
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Figure A4. Same as Figure A2 but with 3xBPF phases at the
takeoff condition shown.
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Figure A7. Same as Figure A5 but with 3xBPF levels for the

takeoff condition shown.
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Figure A6. Comparison of 2xBPF phase for the Ap (dashed

line) and ])pressure (solid lines) configurations for

the radial vane. Levels for the cutback condition are

shown.
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Figure A8. Same as Figure A6 but with 3xBPF phases for the

takeoff condition shown.
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Figure A9. Comparison of 2xBPF SPL for the Ap (solid line)

and Ppressure (solid line) configurations for the

swept vane. Levels for the cutback condition are
shown.
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Figure A11. Same as Figure A9 but with 3xBPF levels for the

takeoff condition shown.
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Figure A10. Comparison of 2xBPF phases for the Ap (solid

line) and lOpres.s,ure (dashed line) configurations

for the swept vane. Levels for the cutback

condition are shown.

100 I 270 1

 10090 _ 90 "**

o

80 _<(L _ ;98°°
70 270

;o I d _ 270

:_ o I _. _ _o1 ,,% ,_.-<2 _ \ /

-: \1: -270 4 /

O0 <_ _ 18090
o

/ 03

070 liO 90 0 910 1_0 270 __ 1::--- ....

270 4
Phase, deg. 0 10 20 30 40 50 60 70 so 90

Percent Vane Chord
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Appendix B

Additional Broadband Results
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